Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Magnesium
Search
Search
Log in
Personal tools
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lung (TRPM7)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{tp|p=35944979|t=2022. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension.|pdf=|usr=}}{{35944979}} {{tp|p=33691194|t=2021. Substantial involvement of TRPM7 inhibition in the therapeutic effect of Ophiocordyceps sinensis on pulmonary hypertension.|pdf=|usr=}}{{33691194}} {{tp|p=38033335|t=2023. Mechanosensitive channels in lung disease.|pdf=|usr=}}{{38033335}} {{tp|p=29867539|t=2018. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia.|pdf=|usr=}}{{29867539}} {{tp|p=34349187|t=2021. Transcriptomic profile of cationic channels in human pulmonary arterial hypertension.|pdf=|usr=}}{{34349187}} {{tp|p=31219801|t=2019. TRPM7 channel inhibition exacerbates pulmonary arterial hypertension through MEK/ERK pathway.|pdf=|usr=}}{{31219801}} {{tp|p=26874684|t=2016. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing DeltaF508-CFTR and G551D-CFTR.|pdf=|usr=}}{{26874684}} {{tp|p=24920677|t=2014. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension.|pdf=|usr=}}{{24920677}} {{tp|p=35053420|t=2022. Endolysosomal Cation Channels and Lung Disease.|pdf=|usr=}}{{35053420}} {{tp|p=25545236|t=2015. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.|pdf=|usr=}}{{25545236}} {{tp|p=30099957|t=2018. Pulmonary arterial hypertension induced by a novel method: Twice-intraperitoneal injection of monocrotaline.|pdf=|usr=}}{{30099957}} {{tp|p=36034851|t=2022. Efficacy of terpenoids in attenuating pulmonary edema in acute lung injury: A meta-analysis of animal studies.|pdf=|usr=}}{{36034851}} {{tp|p=30090065|t=2018. Mechanobiological Feedback in Pulmonary Vascular Disease.|pdf=|usr=}}{{30090065}} {{tp|p=30322215|t=2018. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest?|pdf=|usr=}}{{30322215}} {{tp|p=36527086|t=2022. Disulfiram attenuates hypoxia-induced pulmonary hypertension by inhibiting GSDMD cleavage and pyroptosis in HPASMCs.|pdf=|usr=}}{{36527086}} {{tp|p=35318760|t=2022. Periostin-related progression of different types of experimental pulmonary hypertension: A role for M2 macrophage and FGF-2 signalling.|pdf=|usr=}}{{35318760}} {{tp|p=33007416|t=2021. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms.|pdf=|usr=}}{{33007416}} {{tp|p=35454073|t=2022. Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension.|pdf=|usr=}}{{35454073}} {{tp|p=34572602|t=2021. Mechanosensitivity in Pulmonary Circulation: Pathophysiological Relevance of Stretch-Activated Channels in Pulmonary Hypertension.|pdf=|usr=}}{{34572602}} {{tp|p=23733654|t=2011. Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling.|pdf=|usr=}}{{23733654}} {{tp|p=37254738|t=2023. Notch3/Hes5 Induces Vascular Dysfunction in Hypoxia-Induced Pulmonary Hypertension Through ER Stress and Redox-Sensitive Pathways.|pdf=|usr=}}{{37254738}} {{tp|p=30125956|t=2019. Pulmonary vascular dysfunction in metabolic syndrome.|pdf=|usr=}}{{30125956}} {{tp|p=30015354|t=2019. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation.|pdf=|usr=}} {{tp|p=26749564|t=2016. Hyperglycemia-Mediated Oxidative Stress Increases Pulmonary Vascular Permeability.|pdf=|usr=}}{{26749564}} {{tp|p=25059284|t=2014. Oxidative stress increases pulmonary vascular permeability in diabetic rats through activation of transient receptor potential melastatin 2 channels.|pdf=|usr=}}{{25059284}} {{tp|p=22298659|t=2012. Hypoxic pulmonary vasoconstriction.|pdf=|usr=}}{{22298659}} {{tp|p=25006396|t=2013. Transient receptor potential channels and regulation of lung endothelial permeability.|pdf=|usr=}}{{25006396}}
Summary:
Please note that all contributions to Magnesium may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Magnesium:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:22298659
(
edit
)
Template:23733654
(
edit
)
Template:24920677
(
edit
)
Template:25006396
(
edit
)
Template:25059284
(
edit
)
Template:25545236
(
edit
)
Template:26749564
(
edit
)
Template:26874684
(
edit
)
Template:29867539
(
edit
)
Template:30090065
(
edit
)
Template:30099957
(
edit
)
Template:30125956
(
edit
)
Template:30322215
(
edit
)
Template:31219801
(
edit
)
Template:33007416
(
edit
)
Template:33691194
(
edit
)
Template:34349187
(
edit
)
Template:34572602
(
edit
)
Template:35053420
(
edit
)
Template:35318760
(
edit
)
Template:35454073
(
edit
)
Template:35944979
(
edit
)
Template:36034851
(
edit
)
Template:36527086
(
edit
)
Template:37254738
(
edit
)
Template:38033335
(
edit
)
Template:Tp
(
edit
)
Toggle limited content width