Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Magnesium
Search
Search
Log in
Personal tools
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Vascular Calcification (TRPM7)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{tp|p=23229924|t=2013. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells.|pdf=|usr=}}{{23229924}} {{tp|p=36984673|t=2023. The Interplay between TRPM7 and MagT1 in Maintaining Endothelial Magnesium Homeostasis.|pdf=|usr=}}{{36984673}} {{tp|p=32800835|t=2020. The role of TRPM7 in vascular calcification: Comparison between phosphate and uremic toxin.|pdf=|usr=}}{{32800835}} {{tp|p=28860220|t=2017. Interleukin-18 Enhances Vascular Calcification and Osteogenic Differentiation of Vascular Smooth Muscle Cells Through TRPM7 Activation.|pdf=|usr=}}{{28860220}} {{tp|p=32038296|t=2019. Endothelial Transient Receptor Potential Channels and Vascular Remodeling: Extracellular Ca(2 +) Entry for Angiogenesis, Arteriogenesis and Vasculogenesis.|pdf=|usr=}}{{32038296}} {{tp|p=31559137|t=2019. Magnesium Regulates Endothelial Barrier Functions through TRPM7, MagT1, and S1P1.|pdf=|usr=}}{{31559137}} {{ttp|p=29391410|t=2018. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation.|pdf=|usr=}}{{29391410}} {{ttp|p=26268950|t=2015. Angiotensin II prevents calcification in vascular smooth muscle cells by enhancing magnesium influx.|pdf=|usr=}}{{26268950}} {{tp|p=28134400|t=2016. L'influenza del fosforo, del calcio e del magnesio sulla proteina Gla di matrice e sul processo di calcificazione vascolare: una review sistematica.|pdf=|usr=}}{{28134400}} {{tp|p=24026041|t=2014. The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats.|pdf=|usr=}}{{24026041}} {{tp|p=22896586|t=2012. Upregulation of TRPM7 channels by angiotensin II triggers phenotypic switching of vascular smooth muscle cells of ascending aorta.|pdf=|usr=}}{{22896586}} {{tp|p=22183257|t=2012. Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells.|pdf=|usr=}}{{22183257}} {{tp|p=21290323|t=2011. TRPM channels in the vasculature.|pdf=|usr=}}{{21290323}} {{tp|p=19103997|t=2009. Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia.|pdf=|usr=}}{{19103997}} {{tp|p=25472964|t=2015. TRPM7 regulates vascular endothelial cell adhesion and tube formation.|pdf=|usr=}}{{25472964}} {{tp|p=24710004|t=2014. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.|pdf=|usr=}}{{24710004}} {{tp|p=24586847|t=2014. Magnesium inhibits Wnt/beta-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells.|pdf=|usr=}}{{24586847}} {{tp|p=24223965|t=2013. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells.|pdf=|usr=}}{{24223965}} {{tp|p=23533657|t=2013. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function.|pdf=|usr=}}{{23533657}} {{tp|p=16857972|t=2006. Transient receptor potential channels in cardiovascular function and disease.|pdf=|usr=}}{{16857972}} {{tp|p=16842858|t=2006. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells.|pdf=|usr=}}{{16842858}} {{tp|p=16456106|t=2006. Going with the flow: smooth muscle TRPM7 channels and the vascular response to blood flow.|pdf=|usr=}}{{16456106}} str{{ttp|p=16357306|t=2006. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow.|pdf=|usr=}}{{16357306}} {{tp|p=22566504|t=2012. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells.|pdf=|usr=}}{{22566504}} {{tp|p=21199786|t=2010. Vascular biology of magnesium and its transporters in hypertension.|pdf=|usr=}}{{21199786}} {{tp|p=21150127|t=2011. Transient receptor potential melastatin 7 (TRPM7) cation channels, magnesium and the vascular system in hypertension.|pdf=|usr=}}{{21150127}} {{tp|p=20696983|t=2010. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium.|pdf=|usr=}}{{20696983}} {{tp|p=20536737|t=2010. Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle.|pdf=|usr=}}{{20536737}} {{tp|p=19454490|t=2009. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway.|pdf=|usr=}}{{19454490}} {{tp|p=18192217|t=2008. Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension.|pdf=|usr=}}{{18192217}} {{tp|p=18029156|t=2007. Magnesium transport in hypertension.|pdf=|usr=}}{{18029156}} {{tp|p=33028108|t=2020. Clarification of the Role of miR-9 in the Angiogenesis, Migration, and Autophagy of Endothelial Progenitor Cells Through RNA Sequence Analysis.|pdf=|usr=}}{{33028108}} {{tp|p=16399784|t=2006. Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle.|pdf=|usr=}}{{16399784}} {{tp|p=16120184|t=2005. Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle.|pdf=|usr=}}{{16120184}} {{tp|p=35353635|t=2022. Role of mechanosensitive channels/receptors in atherosclerosis.|pdf=|usr=}}{{35353635}} {{tp|p=27123953|t=2016. The relationship between elevated magnesium levels and coronary artery ectasia.|pdf=|usr=}}{{27123953}} {{tp|p=27419135|t=2016. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification.|pdf=|usr=}}{{27419135}} {{tp|p=25416190|t=2015. Role of TRP channels in the cardiovascular system.|pdf=|usr=}}{{25416190}} {{tp|p=24025865|t=2013. TRP channel Ca(2+) sparklets: fundamental signals underlying endothelium-dependent hyperpolarization.|pdf=|usr=}}{{24025865}} {{tp|p=33969008|t=2021. The Cell Origin and Role of Osteoclastogenesis and Osteoblastogenesis in Vascular Calcification.|pdf=|usr=}}{{33969008}} {{tp|p=31187891|t=2019. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling.|pdf=|usr=}}{{31187891}} {{tp|p=29780355|t=2018. Therapeutic Interference With Vascular Calcification-Lessons From Klotho-Hypomorphic Mice and Beyond.|pdf=|usr=}}{{29780355}} {{ttp|p=25667672|t=2015. Magnesium modulates the expression levels of calcification-associated factors to inhibit calcification in a time-dependent manner.|pdf=|usr=}}{{25667672}} {{tp|p=37176057|t=2023. The Role of Txnip in Mediating Low-Magnesium-Driven Endothelial Dysfunction.|pdf=|usr=}}{{37176057}} {{tp|p=33494333|t=2021. Magnesium Deficiency Induces Lipid Accumulation in Vascular Endothelial Cells via Oxidative Stress-The Potential Contribution of EDF-1 and PPARgamma.|pdf=|usr=}}{{33494333}} {{tp|p=32821726|t=2020. Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity.|pdf=|usr=}}{{32821726}} {{tp|p=30662354|t=2019. Fibroblast Growth Factor 21 Attenuates Vascular Calcification by Alleviating Endoplasmic Reticulum Stress Mediated Apoptosis in Rats.|pdf=|usr=}}{{30662354}} {{tp|p=29892998|t=2018. Exosomes, the message transporters in vascular calcification.|pdf=|usr=}}{{29892998}} {{tp|p=29891771|t=2018. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension.|pdf=|usr=}}{{29891771}} {{tp|p=36984673|t=2023. The Interplay between TRPM7 and MagT1 in Maintaining Endothelial Magnesium Homeostasis.|pdf=|usr=}} {{tp|p=36620697|t=2023. Vascular calcification: Molecular mechanisms and therapeutic interventions.|pdf=|usr=}}{{36620697}} {{tp|p=36079843|t=2022. The Response of the Human Umbilical Vein Endothelial Cell Transcriptome to Variation in Magnesium Concentration.|pdf=|usr=}}{{36079843}} {{tp|p=34444763|t=2021. The Emerging Role of Nutraceuticals in Cardiovascular Calcification: Evidence from Preclinical and Clinical Studies.|pdf=|usr=}}{{34444763}} {{tp|p=33919969|t=2021. High Magnesium and Sirolimus on Rabbit Vascular Cells-An In Vitro Proof of Concept.|pdf=|usr=}}{{33919969}} {{ttp|p=31605492|t=2020. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification.|pdf=|usr=}}{{31605492}} {{tp|p=24290571|t=2014. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study.|pdf=|usr=}}{{24290571}} {{tp|p=21750166|t=2012. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner.|pdf=|usr=}}{{21750166}} {{tp|p=35831341|t=2022. Vascular calcification in different arterial beds in ex vivo ring culture and in vivo rat model.|pdf=|usr=}}{{35831341}} {{tp|p=32706793|t=2020. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice.|pdf=|usr=}}{{32706793}} {{tp|p=32074140|t=2020. Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate.|pdf=|usr=}}{{32074140}} {{tp|p=31142774|t=2019. Serum Magnesium is associated with Carotid Atherosclerosis in patients with high cardiovascular risk (CORDIOPREV Study).|pdf=|usr=}}{{31142774}} {{tp|p=30706178|t=2019. SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18.|pdf=|usr=}}{{30706178}} {{tp|p=29786640|t=2018. Vitamin D in Vascular Calcification: A Double-Edged Sword?|pdf=|usr=}}{{29786640}} {{tp|p=29389872|t=2018. Dietary Magnesium and Cardiovascular Disease: A Review with Emphasis in Epidemiological Studies.|pdf=|usr=}}{{29389872}} {{ttp|p=29225900|t=2017. Decreased magnesium status may mediate the increased cardiovascular risk associated with calcium supplementation.|pdf=|usr=}}{{29225900}} {{tp|p=28581893|t=2017. Roles of transient receptor potential channels in regulation of vascular and epithelial barriers.|pdf=|usr=}}{{28581893}} {{tp|p=25834234|t=2015. Transient receptor potential channels in the vasculature.|pdf=|usr=}}{{25834234}} {{ttp|p=25607936|t=2015. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium.|pdf=|usr=}}{{25607936}} {{ttp|p=33445441|t=2021. Apoptosis in the Extraosseous Calcification Process.|pdf=|usr=}}{{33445441}} {{tp|p=27809396|t=2017. Redox regulation of transient receptor potential channels in the endothelium.|pdf=|usr=}}{{27809396}} {{tp|p=22909953|t=2012. Macrophage function in atherosclerosis: potential roles of TRP channels.|pdf=|usr=}}{{22909953}} {{tp|p=35353635|t=2022. Role of mechanosensitive channels/receptors in atherosclerosis.|pdf=|usr=}}{{35353635}} {{tp|p=27419135|t=2016. Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification.|pdf=|usr=}}{{27419135}} {{tp|p=24025865|t=2013. TRP channel Ca(2+) sparklets: fundamental signals underlying endothelium-dependent hyperpolarization.|pdf=|usr=}}{{24025865}} {{tp|p=34504876|t=2021. beta-Hydroxybutyric Inhibits Vascular Calcification via Autophagy Enhancement in Models Induced by High Phosphate.|pdf=|usr=}}{{34504876}} {{tp|p=33969008|t=2021. The Cell Origin and Role of Osteoclastogenesis and Osteoblastogenesis in Vascular Calcification.|pdf=|usr=}}{{33969008}} {{tp|p=34003800|t=2021. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease.|pdf=|usr=}}{{34003800}} {{tp|p=33716794|t=2021. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels.|pdf=|usr=}}{{33716794}} {{tp|p=33494333|t=2021. Magnesium Deficiency Induces Lipid Accumulation in Vascular Endothelial Cells via Oxidative Stress-The Potential Contribution of EDF-1 and PPARgamma.|pdf=|usr=}}{{33494333}} {{tp|p=33369187|t=2021. Role of gut microbiota-derived metabolites on vascular calcification in CKD.|pdf=|usr=}}{{33369187}} {{tp|p=32821726|t=2020. Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity.|pdf=|usr=}}{{32821726}} {{tp|p=37441489|t=2023. Reduced Levels of the Antiaging Hormone Klotho are Associated With Increased Aortic Stiffness in Diabetic Kidney Disease.|pdf=|usr=}}{{37441489}} {{tp|p=36984673|t=2023. The Interplay between TRPM7 and MagT1 in Maintaining Endothelial Magnesium Homeostasis.|pdf=|usr=}}{{36984673}} {{tp|p=36620697|t=2023. Vascular calcification: Molecular mechanisms and therapeutic interventions.|pdf=|usr=}}{{36620697}} {{tp|p=34444763|t=2021. The Emerging Role of Nutraceuticals in Cardiovascular Calcification: Evidence from Preclinical and Clinical Studies.|pdf=|usr=}}{{34444763}} {{tp|p=32706793|t=2020. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice.|pdf=|usr=}}{{32706793}} {{tp|p=32074140|t=2020. Microvasculopathy and soft tissue calcification in mice are governed by fetuin-A, magnesium and pyrophosphate.|pdf=|usr=}}{{32074140}} {{tp|p=30706178|t=2019. SGK1-dependent stimulation of vascular smooth muscle cell osteo-/chondrogenic transdifferentiation by interleukin-18.|pdf=|usr=}}{{30706178}} {{tp|p=34938784|t=2021. Inflammatory Cells Accelerated Carotid Artery Calcification via MMP9: Evidences From Single-Cell Analysis.|pdf=|usr=}}{{34938784}} {{tp|p=34650631|t=2021. miR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction.|pdf=|usr=}}{{34650631}} {{tp|p=33937254|t=2021. ORAI1 Ca(2+) Channel as a Therapeutic Target in Pathological Vascular Remodelling.|pdf=|usr=}}{{33937254}} {{tp|p=33390906|t=2020. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes.|pdf=|usr=}}{{33390906}} {{tp|p=32757967|t=2020. Inflammasomes: a preclinical assessment of targeting in atherosclerosis.|pdf=|usr=}} {{tp|p=32161445|t=2020. Inhibitory Effect of Curcumin on Artery Restenosis Following Carotid Endarterectomy and Its Associated Mechanism in vitro and in vivo.|pdf=|usr=}}{{32161445}} {{tp|p=35002759|t=2021. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation.|pdf=|usr=}}{{35002759}} {{tp|p=34366887|t=2021. Editorial: Advances and Current Challenges in Calcium Signaling Within the Cardiovascular System.|pdf=|usr=}}{{34366887}} {{tp|p=30559679|t=2018. TRP Channels in Angiogenesis and Other Endothelial Functions.|pdf=|usr=}}{{30559679}} {{tp|p=35638551|t=2023. APOLD1 loss causes endothelial dysfunction involving cell junctions, cytoskeletal architecture, and Weibel-Palade bodies, while disrupting hemostasis.|pdf=|usr=}}{{35638551}} {{tp|p=35328769|t=2022. Pathophysiology of Atherosclerosis.|pdf=|usr=}}{{35328769}} {{tp|p=34299254|t=2021. The Role of TRPM2 in Endothelial Function and Dysfunction.|pdf=|usr=}}{{34299254}} {{tp|p=33233811|t=2020. Calciprotein Particles Cause Endothelial Dysfunction under Flow.|pdf=|usr=}}{{33233811}} {{tp|p=31416282|t=2019. Endothelial Ca(2+) Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel.|pdf=|usr=}}{{31416282}} {{tp|p=24204345|t=2013. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis.|pdf=|usr=}}{{24204345}} {{tp|p=18494937|t=2008. Na(+)-independent Mg(2+) transport sensitive to 2-aminoethoxydiphenyl borate (2-APB) in vascular smooth muscle cells: involvement of TRPM-like channels.|pdf=|usr=}}{{18494937}} {{tp|p=33240650|t=2020. Analysis of genes and underlying mechanisms involved in foam cells formation and atherosclerosis development.|pdf=|usr=}}{{33240650}} {{tp|p=34667238|t=2021. A neutralizing IL-11 antibody reduces vessel hyperplasia in a mouse carotid artery wire injury model.|pdf=|usr=}}{{34667238}} {{tp|p=27093159|t=2016. Sustained Improvement of Arterial Stiffness and Blood Pressure after Long-Term Rosuvastatin Treatment in Patients with Inflammatory Joint Diseases: Results from the RORA-AS Study.|pdf=|usr=}}{{27093159}} {{tp|p=22905291|t=2012. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters.|pdf=|usr=}}{{22905291}} {{tp|p=37815888|t=2023. Sonic hedgehog signaling promotes angiogenesis of endothelial progenitor cells to improve pressure ulcers healing by PI3K/AKT/eNOS signaling.|pdf=|usr=}}{{37815888}} {{tp|p=36552677|t=2022. Oxidized High-Density Lipoprotein Induces Endothelial Fibrosis Promoting Hyperpermeability, Hypotension, and Increased Mortality.|pdf=|usr=}}{{36552677}} {{tp|p=35861069|t=2022. PLCbeta2 Promotes VEGF-Induced Vascular Permeability.|pdf=|usr=}}{{35861069}} {{tp|p=34422982|t=2021. Local FK506 implants in non-human primates to prevent early acute rejection in vascularized composite allografts.|pdf=|usr=}}{{34422982}} {{tp|p=33987277|t=2021. A narrative review of exosomes in vascular calcification.|pdf=|usr=}}{{33987277}} {{tp|p=32781528|t=2020. Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT.|pdf=|usr=}}{{32781528}} {{tp|p=32010490|t=2020. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging.|pdf=|usr=}}{{32010490}} {{tp|p=29351417|t=2018. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39.|pdf=|usr=}}{{29351417}} {{tp|p=28412716|t=2017. Tanshinone IIA suppresses the progression of atherosclerosis by inhibiting the apoptosis of vascular smooth muscle cells and the proliferation and migration of macrophages induced by ox-LDL.|pdf=|usr=}}{{28412716}} {{tp|p=28212803|t=2017. Calcium Channels in Vascular Smooth Muscle.|pdf=|usr=}}{{28212803}} {{tp|p=25360054|t=2014. Fluid Mechanics, Arterial Disease, and Gene Expression.|pdf=|usr=}}{{25360054}} {{tp|p=21479754|t=2011. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts.|pdf=|usr=}}{{21479754}} {{tp|p=38132141|t=2023. Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification.|pdf=|usr=}}{{38132141}} {{tp|p=34550346|t=2022. Two-faced Janus: the dual role of macrophages in atherosclerotic calcification.|pdf=|usr=}}{{34550346}} {{tp|p=32065054|t=2020. T-Cell-Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension.|pdf=|usr=}}{{32065054}} {{tp|p=30663158|t=2019. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture.|pdf=|usr=}}{{30663158}} {{tp|p=29514202|t=2018. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness.|pdf=|usr=}}{{29514202}} {{tp|p=29394331|t=2018. Vascular smooth muscle contraction in hypertension.|pdf=|usr=}}{{29394331}} {{ttp|p=28333380|t=2017. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.|pdf=|usr=}}{{28333380}} {{tp|p=27118293|t=2016. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications.|pdf=|usr=}}{{27118293}} {{tp|p=29705934|t=2018. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In Vitro Through MicroRNA-181b/TRPM7 Axis.|pdf=|usr=}}{{29705934}} {{tp|p=33028108|t=2020. Clarification of the Role of miR-9 in the Angiogenesis, Migration, and Autophagy of Endothelial Progenitor Cells Through RNA Sequence Analysis.|pdf=|usr=}}{{33028108}} {{tp|p=21646743|t=2011. Effects of serum amyloid a and lysophosphatidylcholine on intracellular calcium concentration in human coronary artery smooth muscle cells.|pdf=|usr=}}{{21646743}} {{tp|p=20132412|t=2011. Imipramine inhibition of TRPM-like plasmalemmal Mg2+ transport in vascular smooth muscle cells.|pdf=|usr=}}{{20132412}} {{tp|p=37238629|t=2023. Bidirectional TRP/L Type Ca(2+) Channel/RyR/BK(Ca) Molecular and Functional Signaloplex in Vascular Smooth Muscles.|pdf=|usr=}}{{37238629}} {{tp|p=36421426|t=2022. Citronellal Attenuates Oxidative Stress-Induced Mitochondrial Damage through TRPM2/NHE1 Pathway and Effectively Inhibits Endothelial Dysfunction in Type 2 Diabetes Mellitus.|pdf=|usr=}}{{36421426}} {{tp|p=35656112|t=2022. DR1 Activation Inhibits the Proliferation of Vascular Smooth Muscle Cells through Increasing Endogenous H(2)S in Diabetes.|pdf=|usr=}}{{35656112}} {{ttp|p=33072245|t=2020. Markers of Endothelial Cells in Normal and Pathological Conditions.|pdf=|usr=}}{{33072245}} {{tp|p=29452094|t=2018. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease.|pdf=|usr=}}{{29452094}} {{tp|p=29433476|t=2018. TRPV4 regulates migration and tube formation of human retinal capillary endothelial cells.|pdf=|usr=}}{{29433476}} {{tp|p=26945080|t=2016. Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure.|pdf=|usr=}}{{26945080}} {{tp|p=37627891|t=2023. Mechanism Analysis of Vascular Calcification Based on Fluid Dynamics.|pdf=|usr=}}{{37627891}} {{tp|p=37588590|t=2023. The role of macrophage ion channels in the progression of atherosclerosis.|pdf=|usr=}}{{37588590}} {{tp|p=35147077|t=2022. STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells.|pdf=|usr=}}{{35147077}} {{tp|p=33792900|t=2021. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells.|pdf=|usr=}}{{33792900}} {{tp|p=32431625|t=2020. Regulation of Vessel Permeability by TRP Channels.|pdf=|usr=}}{{32431625}} {{tp|p=32364494|t=2020. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure.|pdf=|usr=}}{{32364494}} {{tp|p=30511640|t=2018. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure.|pdf=|usr=}}{{30511640}} {{tp|p=28057793|t=2017. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability.|pdf=|usr=}}{{28057793}} {{tp|p=38069089|t=2023. Cracking the Endothelial Calcium (Ca(2+)) Code: A Matter of Timing and Spacing.|pdf=|usr=}}{{38069089}} {{tp|p=31766552|t=2019. Ca(2+) Flux: Searching for a Role in Efferocytosis of Apoptotic Cells in Atherosclerosis.|pdf=|usr=}}{{31766552}} {{ttp|p=24935972|t=2014. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors beta1 and beta2.|pdf=|usr=}}{{24935972}} {{ttp|p=23635013|t=2013. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells.|pdf=|usr=}}{{23635013}} {{ttp|p=29333215|t=2017. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State.|pdf=|usr=}}{{29333215}} {{tp|p=28475214|t=2017. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells.|pdf=|usr=}}{{28475214}} {{tp|p=27531064|t=2016. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles.|pdf=|usr=}}{{27531064}} {{tp|p=25180264|t=2014. Vascular TRP channels: performing under pressure and going with the flow.|pdf=|usr=}}{{25180264}} {{tp|p=23748495|t=2014. Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids.|pdf=|usr=}}{{23748495}} {{tp|p=22886693|t=2013. Myosin light chain kinase signaling in endothelial barrier dysfunction.|pdf=|usr=}}{{22886693}} {{ttp|p=25610592|t=2014. Mechanisms regulating endothelial permeability.|pdf=|usr=}}{{25610592}} {{tp|p=20966350|t=2010. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity.|pdf=|usr=}}{{20966350}} {{tp|p=35163382|t=2022. A Central Role for TRPM4 in Ca(2+)-Signal Amplification and Vasoconstriction.|pdf=|usr=}}{{35163382}} {{tp|p=28412716|t=2017. Tanshinone IIA suppresses the progression of atherosclerosis by inhibiting the apoptosis of vascular smooth muscle cells and the proliferation and migration of macrophages induced by ox-LDL.|pdf=|usr=}}{{28412716}} {{tp|p=38089479|t=2023. Research progress on the mechanism of angiogenesis in wound repair and regeneration.|pdf=|usr=}}{{38089479}} {{tp|p=36786037|t=2023. Exosomes for angiogenesis induction in ischemic disorders.|pdf=|usr=}}{{36786037}} {{tp|p=34992411|t=2021. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis.|pdf=|usr=}}{{34992411}}
Summary:
Please note that all contributions to Magnesium may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Magnesium:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:16120184
(
edit
)
Template:16357306
(
edit
)
Template:16399784
(
edit
)
Template:16456106
(
edit
)
Template:16842858
(
edit
)
Template:16857972
(
edit
)
Template:18029156
(
edit
)
Template:18192217
(
edit
)
Template:18494937
(
edit
)
Template:19103997
(
edit
)
Template:19454490
(
edit
)
Template:20132412
(
edit
)
Template:20536737
(
edit
)
Template:20696983
(
edit
)
Template:20966350
(
edit
)
Template:21150127
(
edit
)
Template:21199786
(
edit
)
Template:21290323
(
edit
)
Template:21479754
(
edit
)
Template:21646743
(
edit
)
Template:21750166
(
edit
)
Template:22183257
(
edit
)
Template:22566504
(
edit
)
Template:22886693
(
edit
)
Template:22896586
(
edit
)
Template:22905291
(
edit
)
Template:22909953
(
edit
)
Template:23229924
(
edit
)
Template:23533657
(
edit
)
Template:23635013
(
edit
)
Template:23748495
(
edit
)
Template:24025865
(
edit
)
Template:24026041
(
edit
)
Template:24204345
(
edit
)
Template:24223965
(
edit
)
Template:24290571
(
edit
)
Template:24586847
(
edit
)
Template:24710004
(
edit
)
Template:24935972
(
edit
)
Template:25180264
(
edit
)
Template:25360054
(
edit
)
Template:25416190
(
edit
)
Template:25472964
(
edit
)
Template:25607936
(
edit
)
Template:25610592
(
edit
)
Template:25667672
(
edit
)
Template:25834234
(
edit
)
Template:26268950
(
edit
)
Template:26945080
(
edit
)
Template:27093159
(
edit
)
Template:27118293
(
edit
)
Template:27123953
(
edit
)
Template:27419135
(
edit
)
Template:27531064
(
edit
)
Template:27809396
(
edit
)
Template:28057793
(
edit
)
Template:28134400
(
edit
)
Template:28212803
(
edit
)
Template:28333380
(
edit
)
Template:28412716
(
edit
)
Template:28475214
(
edit
)
Template:28581893
(
edit
)
Template:28860220
(
edit
)
Template:29225900
(
edit
)
Template:29333215
(
edit
)
Template:29351417
(
edit
)
Template:29389872
(
edit
)
Template:29391410
(
edit
)
Template:29394331
(
edit
)
Template:29433476
(
edit
)
Template:29452094
(
edit
)
Template:29514202
(
edit
)
Template:29705934
(
edit
)
Template:29780355
(
edit
)
Template:29786640
(
edit
)
Template:29891771
(
edit
)
Template:29892998
(
edit
)
Template:30511640
(
edit
)
Template:30559679
(
edit
)
Template:30662354
(
edit
)
Template:30663158
(
edit
)
Template:30706178
(
edit
)
Template:31142774
(
edit
)
Template:31187891
(
edit
)
Template:31416282
(
edit
)
Template:31559137
(
edit
)
Template:31605492
(
edit
)
Template:31766552
(
edit
)
Template:32010490
(
edit
)
Template:32038296
(
edit
)
Template:32065054
(
edit
)
Template:32074140
(
edit
)
Template:32161445
(
edit
)
Template:32364494
(
edit
)
Template:32431625
(
edit
)
Template:32706793
(
edit
)
Template:32781528
(
edit
)
Template:32800835
(
edit
)
Template:32821726
(
edit
)
Template:33028108
(
edit
)
Template:33072245
(
edit
)
Template:33233811
(
edit
)
Template:33240650
(
edit
)
Template:33369187
(
edit
)
Template:33390906
(
edit
)
Template:33445441
(
edit
)
Template:33494333
(
edit
)
Template:33716794
(
edit
)
Template:33792900
(
edit
)
Template:33919969
(
edit
)
Template:33937254
(
edit
)
Template:33969008
(
edit
)
Template:33987277
(
edit
)
Template:34003800
(
edit
)
Template:34299254
(
edit
)
Template:34366887
(
edit
)
Template:34422982
(
edit
)
Template:34444763
(
edit
)
Template:34504876
(
edit
)
Template:34550346
(
edit
)
Template:34650631
(
edit
)
Template:34667238
(
edit
)
Template:34938784
(
edit
)
Template:34992411
(
edit
)
Template:35002759
(
edit
)
Template:35147077
(
edit
)
Template:35163382
(
edit
)
Template:35328769
(
edit
)
Template:35353635
(
edit
)
Template:35638551
(
edit
)
Template:35656112
(
edit
)
Template:35831341
(
edit
)
Template:35861069
(
edit
)
Template:36079843
(
edit
)
Template:36421426
(
edit
)
Template:36552677
(
edit
)
Template:36620697
(
edit
)
Template:36786037
(
edit
)
Template:36984673
(
edit
)
Template:37176057
(
edit
)
Template:37238629
(
edit
)
Template:37441489
(
edit
)
Template:37588590
(
edit
)
Template:37627891
(
edit
)
Template:37815888
(
edit
)
Template:38069089
(
edit
)
Template:38089479
(
edit
)
Template:38132141
(
edit
)
Template:Tp
(
edit
)
Template:Ttp
(
edit
)
Toggle limited content width